(C) SecurityXploded Research Group Advanced Malware Analysis Training

MALWARE ANALYSIS USING PYMAL &
MALPIMP

Amit Malik
Idiot @SecurityXploded Research Group

Researcher @Fireeye Labs

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Agenda

+ Tools introduction
- Malpimp
- Configuration file
- Tracing
+ Demo
+ Pymal
- Features and functions
+ Demo

+ More examples

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Tools Introduction

+ Malpimp — based on pydbg (pure python debugger)
+ API tracing, using configuration file you can configure the tool according to your needs.
- Light weight and very easy, just serves the purpose

- PyMal — Python interactive shell for malware analysis

- Based on three powerful pure python tools: pefile, pydbg, volatility

Pydbg != debugger in pymal

Process manipulation & live memory analysis.

- Some powerful features like hook detection (proprietary), Injected code detection.

And full python support ©

C:\Documents and SettingsN\Administrator\Desktop\Malpimp>malpimp.exe

[2] Author: Amit Malik {(m.amit38CFgmail.com>
[+¢] http://uuww.securityxploded.com

[+] Usage: malpimp.exe <exe_file> <address>
[+*] Usage: malpimp.exe —p pid

[+*]1 example: malpimp.exe sample.exe 8

[+*] example: malpimp.exe —p 540

C:\Documents and Settings\Administrator\Desktop\Malpimp>malpimp.exe ..\procexp.exe @
i breakpoints on the exports of dll: C:\NUWINDOUWS\system32\kernel32.d1l1l
breakpoints on the exports of C:NUWUINDOWSN\system32\WS2_32_.d11
breakpoints on the exports of C:\NUINDOWSN\system32\ADUAPI32.d11
breakpoints on the exports of C:\NUINDOWSN\system32\Secur32.d11l
breakpoints on the exports of C:\NUINDOWSN\system32\msvucrt.dll
breakpoints on the exports of C:\NWINDOUWSN\system32\MPR.d11

Second argument on command line is the address from where we want to start tracing. Zero means entry point.
Configuration file

Fine control over tracing

Loop detection based on return address — believe me this is really a beautiful feature, I saw couple of big

heavy commercial products that are suffering on it. Also this technique is unique to this tool and it greatly

improves the tracing time. [Depending on your configs it is capable to reduce tracing time from 2 hours to 2

seconds with almost same information.]

Inclusion and exclusion policies

Malpimp Configuration

+ Tracelnclude — Apply hooks only on these DLLs or APIs, if this field have some value either in DLL
or API then TraceExclude will be ignored.

+ Syntax : for DLL: simple dll name like : kernel32.dll, user32.dll etc. , for API: DLL!API name e.g: kernel32!Virtual Alloc

+ TraceExclude works only when we have all fields empty in Tracelnclude policy.

Hooking policies

Tracingexclude - ouring hooking exclude the DLLS and APLs mentioned in this policy.

TracingInclude - puring hoaking only hook the DLLS and APIS mentioned in this policy, If this policy have values in its
fields then TracingExlude entries will he ingnored.

seperate the multiple values using comma (,)
For API just use API name. eq: LoadLibraryA

[Tracingexclude)

DLLS = USER32.d17,GDI32.d17,ntd17.d17, PSAPT. OLL, REGAPT. d11,WS2HELP, d11, 01832, d11, USERENV, d11, AUTHZ, d11, msASNL, d17, RPCRT4, d11
APT =

For AP use DLL!APT syntax eq: kernel32!LoadLibraryA
[TracingInclude]

OLLS =

APT =

Il emnkee]l dhea ciicaimdan 2a o hakdaw e

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Malpimp Configuration cont.

+ Loop detection settings

- Report logging addresses — set start and end addresses for logging, it allow us to log only important
trace. For example: we want to trace API calls from newly allocated region or from a specific DLL

address space.

control the execution Tn a better way.

[additional]

AR

solwveloop (yes//no) - remove the hook from the apis that are called with same
solveloop = yes

apithreshold = 5

Arguments to application
args = None

AR

Everything between these addresses will be logged into the trace file.
change according to your reguiremants

default: 167772160 (0Ox0A000000)

Toggingaddrmax = 1879048152

loggingaddrmin = 0

#addE End of File #a#dd

+ You can also attach malpimp to any running process using the following command

« Malpimp.exe —p <process id>

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Demo

- Bamital sample Trace!

(C) SecurityXploded Research Group Advanced Malware Analysis Training

[imitations

- Based on a debugger so debugger detection techniques can easily detect.

« Unreliable for heavy applications with hooks on lots of DLLs.

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Pymal

- Python interactive shell for malware analysis
« Wrapper functions around pefile, pydbg and volatility
 Helpful in active process manipulation and live memory analysis

- Interactive shell with full python support so additional modules can be easily imported, operations on

data are much easier.
- Tab completion, use object “pm” to see pymal methods.
- Uses distorm3 library for disassembly

« Some features like hook detection and injected code detection are awesome.

Please read the PyMal disclaimer carefully before using its code/technique/theory into your tools.

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Pymal Functions

+ Only the important ones.

+ Process related:

« DumpModule — Dump the loaded dll from memory to disc (it will fix the headers automatically)
+ DumpMem — Dump exe image from memory to disc (no header fix)

+ DumpPidFix — Dump exe image from memory and fix the headers

+ DumpMemToPE — Dump the PE file from memory (just need an address but it is your responsibility to

verify the valid image at that address)
« OpenProcess, ReadMemory, WriteMemory, ShowProcesses, ShowModules, ShowThreads etc.

+ FindDIl - search for a dll in all processes.

+ FindProcess — retrieve pid using exe name.

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Pymal Functions cont.

- Pefile related functions

« LoadPE - load the exe file

- ImageBase — get image base address

+ EntryPoint — get entry point address

+ Sections, ImportTable, ExporTable etc.

+ You can access original pefile and pydbg objects using pm.pe and pm.dbg

+ Advanced functions

+ ScanModInPid — scan a dll in process for hooks

+ ScanPidForMod — scan all loaded modules for hooks in a process.
+ FindInjectedCode — find the RWE allocations in the process

« Others

+ Disasm™ - show disassembly

+ In case of confusion use help(pm.function_name) eg: help(pm.Disasm)

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Pymal Demo

+ Pymal Demo

+ Online users: http://nagareshwar.securityxploded.com/2013/08/28/bamital-analysis-using-malpimp-
and-pymal/

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Pymal — more examples!

- Helpful in many scenarios

- Read/write remote process memory, helpful mainly when one process injects code in other processes
+ Monitor addresses or values at addresses without using or attaching a debugger.

- Read data from process and apply your logics from a single shell eg: xor data, calculate hash etc.

+ Import you own modules

- FEtc. etc.

(C) SecurityXploded Research Group Advanced Malware Analysis Training

Thank You!

